Inmunología del cáncer I: bases moleculares y celulares de la respuesta inmune antitumoral

Joel de León, Arturo Pareja

Resumen


Significativos recursos materiales, financieros y humanos se dedican a la investigación de la biología del cáncer. La validación de biomarcadores, el desarrollo de novedosos métodos para el diagnóstico y la terapia, la implementación de programas de pesquisa a nivel poblacional y la promoción de estilos de vida saludables han impactado positivamente en la
prevención y control de este grupo de enfermedades. Sin embargo, el cáncer sigue siendo un problema de salud mundial, entre otros factores, por la compleja relación que se establece entre el sistema inmune del hospedero y las células neoplásicas. Está demostrado que los mecanismos efectores que posee el sistema inmune permiten detectar y eliminar las células transformadas. Sin embargo, estos mismos mecanismos promueven la evolución somática de los tumores, al seleccionar variantes celulares resistentes a la acción de la inmunidad. Esta interacción ocurre fundamentalmente en el microambiente tumoral y ha sido conceptualizada como inmunoedición tumoral. Lo anterior sustenta la racionalidad de la inmunoterapia, la que buscar reforzar la inmunidad antitumoral, a la vez que bloquea los mecanismos de evasión a la
inmunovigilancia. Con este trabajo de revisión iniciamos una serie de tres artículos que, en este orden, recorrerán las bases moleculares y celulares de la respuesta inmune antitumoral, presentarán los fundamentos de la biología tumoral y, finalmente, abordarán las implicaciones de la compleja relación entre el sistema inmune y las neoplasias para la inmunoterapia en cáncer.


Palabras clave


Sistema inmunológico; Procesos del sistema inmunológico; Inmunovigilancia; Cáncer

Texto completo:

PDF

Referencias


Ribatti D. The concept of immune surveillance against tumors.

The first theories. Oncotarget. 2017; 8(4):7175-80.

Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol.2011; 29:235-71.

Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagés C, et.al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006; 313(5795):1960-64.

Fridman WH, Pagès F, Sautès-Fridman C, Jérôme G. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012; 12:298-306

Gardner A, Ruffell B. Dendritic Cells and cancer immunity. Trends Immunol. 2016; 37(12):855-865.

Chen DS and Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013; 39(1):1-10.

Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, et. al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol. 2014; 232(2):199-209

Taube JM, Galon J, Sholl LM, Rodig SJ, Cottrell TR, Giraldo NA,

et. al. Implications of the tumor immune microenvironment

for staging and therapeutics. Mod Pathol. 2018; 31(2):214-234.

Greaves M, Maley CC. Clonal evolution in cancer. Nature.2012; 481(7381): 306-313.

Yao Y, Dai W. Genomic Instability and Cancer. J Carcinog Mutagen. 2014; 5:1000165.

Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali S, Ennis R, et. al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Medicine. 2017; 9:34-48.

Khong HT and Restifo N. Natural selection of tumor variants in

the generation of “tumor escape” phenotypes. Nat Immunol. 2002; 3(11):999-1005.

Efremova M, Rieder D, Klepsch V, Charoentong P, Finotello F,

Hackl H, et. al. Targeting immune checkpoints potentiates

immunoediting and changes the dynamics of tumor evolution. Nat Commun. 2018; 9:32.

Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007; 25: 267-96.

Gallucci S, Matzinger P. Danger signals: SOS to the immune

system. Curr Opin Immunol. 2001; 13(1):114-19.

Fucikova J, Moserova I, Urbanova L, Bezu L, Kepp O, Cremer

I, et. al. Prognostic and Predictive Value of DAMPs and DAMPAssociated

Processes in Cancer. Front Immunol. 2015; 6:402.

Hernandez C, Huebener P, Schwabe RF. Damage-associated molecular patterns in cancer: a double-edged sword.

Oncogene. 2016; 35(46):5931-41.

Suresh R, Mosser DM. Pattern recognition receptors in innate

immunity, host defense, and immunopathology. Adv Physiol

Educ. 2013; 37(4): 284-91.

Treanor B. B-cell receptor: from resting state to activate.

Immunology. 2012; 136(1): 21-27.

Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME.

Structural biology of the T-cell receptor: insights into receptor

assembly, ligand recognition, and initiation of signaling. Cold

Spring Harb Perspect Biol. 2010; 2(4): a005140.

Sokol CL, Luster AD. The chemokine system in innate immunity.

Cold Spring Harb Perspect Biol. 2015; 7(5): a016303.

Moser B, Wolf M, Walz A, Loetscher P. Chemokines: multiple

levels of leukocyte migration control. Trends Immunol. 2004;

(2):75-84.

O’Sullivan T, Saddawi-Konefka R, Vermi W, Koebel CM, Arthur

C, White JM, et. al. Cancer immunoediting by the innate

immune system in the absence of adaptive immunity. J. Exp.

Med. 2012; 209(10):1869-82.

Radiloff DR, Rinella ES, Threadgill DW. Modeling cancer patient

populations in mice: Complex genetic and environmental

factors. Drug Discov Today Dis Models. 2007; 4(2): 83-88.

Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buqué A, Senovilla

L, Baracco EE, et. al. Classification of current anticancer

immunotherapies. Oncotarget. 2014; 5(24):12472-508.

Belkaid Y and Hand T. Role of the microbiota in immunity and

inflammation. Cell. 2014; 157(1): 121-41.

Ganeshan K, Chawla A. Metabolic regulation of immune

responses. Annu Rev Immunol. 2014; 32: 609-34.

Mogensen TH. Pathogen recognition and inflammatory

signaling in innate immune defenses. Clin Microbiol Rev. 2009;

(2): 240-73.

Buchta CM, Bishop GA. Toll-like receptors and B cells:

functions and mechanisms. Immunol Res. 2014; 59(1-3): 12-22.

Rahman AH, Taylor DK, Turka LA. The contribution of direct TLR signaling to T cell responses. Immunol Res. 2009; 45(1):

-36

Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen

recognition. Int Immunol. 2009; 21(4): 317-37.

O'Neill LA, Golenbock D, Bowie AG. The history of Toll-like

receptors - redefining innate immunity. Nat Rev Immunol.

; 13(6): 453-60.

Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam

S, et. al. Scavenger Receptor Structure and Function in Health

and Disease. Cells. 2015; 4(2): 178-201.

Tsoni SV, Brown GD. beta-Glucans and dectin-1. Ann N Y Acad

Sci. 2008;1143:45-60.

Turner MW. The role of mannose-binding lectin in health and

disease. Mol Immunol. 2003; 40(7):423-9.

Franchi L, Warner N, Viani K, Nuñez G. Function of Nod-like

Receptors in Microbial Recognition and Host Defense. Immunol

Rev. 2009; 227(1): 106-28.

Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G. The

inflammasome: a caspase-1-activation platform that regulates

immune responses and disease pathogenesis. Nat Immunol. 2009; 10(3): 241-47.

Tonegawa S. Somatic generation of antibody diversity. Nature.

; 302: 575-81.

Jung D, Alt FW. Unraveling V(D)J Recombination: Insights into

Gene Regulation. Cell. 2004; 116(2): 299-311.

Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat Rev Immunol. 2014; 14(6): 377-91. 41. Pelanda R, Torres RM. Central B-Cell Tolerance: Where Selection Begins. Cold Spring Harb Perspect Biol. 2012; 4(4): a007146.

Hsieh CS, Lee H, Lio CJ. Selection of regulatory T cells in the

thymus. Nat Rev Immunol. 12(3): 157-16.

Kanamori M, Nakatsukasa H, Okada M, Lu Q, Yoshimura A.

Induced Regulatory T Cells: Their Development, Stability, and

Applications. Trends Immunol. 2016; 37(11): 803-11.

Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems

understanding of MHC class I and MHC class II antigen

presentation. Nat Rev Immunol. 2011; 11(12): 823-36.

Roche PA, Furuta K. The ins and outs of MHC class II-mediated

antigen processing and presentation. Nat Rev Immunol. 2015;15(4): 203-16.

Maddur MS, Kaveri SV, Bayry J. Basophils as antigen presenting

cells. Trends Immunol. 2010; 31(2):45-8.

Brandes M, Willimann K, Moser B. Professional antigenpresentation

function by human gamma-delta T Cells.

Science. 2005; 309(5732): 264-68.

Blum JS, Wearsch PA, Cresswell P. Pathways of Antigen Processing. Annu Rev Immunol. 2013; 31: 443-73.

.Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation

by dendritic cells. Nat Rev Immunol. 2012; 12(8): 557-69.

Heath WR, Carbone FR. Cross-presentation in viral immunity

and self-tolerance. Nat Rev Immunol. 2001; 1(2): 126–34.

Sánchez-Paulete AR, Teijeira A, Cueto FJ, Garasa S, Pérez-Gracia JL, Sánchez-Arráez A, et. al. Antigen crosspresentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann Oncol. 2017; 28(suppl-12): xii44-xii55.

Dinarello CA. Historical Review of Cytokines. Eur J Immunol. 2011; 37(Suppl 1): S34-S45.

Ozaki K, Leonard WJ. Cytokine and Cytokine Receptor Pleiotropy and Redundancy. J Biol Chem. 2002; 277(33):29355-358.

Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine

receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014; 32: 659-702.

Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007; 7(9): 678-89.

Schroeder HW, Cavacini L. Structure and Function of Immunoglobulins. J Allergy Clin Immunol. 2010; 125(202): S41-S52.

.Holodick NE, Rodríguez-Zhurbenko N, Hernández AM. Defining

Natural Antibodies. Front Immunol. 2017; 8: 872.

Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nat Rev Immunol. 2015; 15(3): 160-171

Balato A, Unutmaz D, Gaspari AA. Natural killer T cells: an unconventional T-cell subset with diverse effector and regulatory functions. J Invest Dermatol. 2009; 129(7): 1628-42.

Lünemann A, Lünemann JD, Münz C. Regulatory NK-cell

functions in inflammation and autoimmunity. Mol Med. 2009;15(9-10): 352-58.

Paul S, Lal G. Regulatory and effector functions of gammadelta

(γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Int J Cancer. 2016; 139(5): 976-85.

62.Qian C, Cao X. Dendritic cells in the regulation of immunity

and inflammation. Semin Immunol. 2018; 35: 3-11.

Mildner A, Jung S. Development and function of dendritic cell

subsets. Immunity. 2014; 40(5): 642-56.

Dalod M, Chelbi R, Malissen B, Lawrence T. Dendritic cell

maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J. 2014;33(10):1104-116.

Matzinger P. Tolerance, danger, and the extended family. Annu

Rev Immunol. 1994; 12: 991-1045.

Litman GW, Rast JP, Fugmann SD. The origins of vertebrate

adaptive immunity. Nat Rev Immunol. 2010; 10(8):543-53.

Luckheeramn RV, Zhou R, Verma AD, Xia B. CD4+T cells:

differentiation and functions. Clin Dev Immunol. 2012; 2012:925135.

Halle S, Halle O, Försterv R. Mechanisms and dynamics of

T cell-mediated cytotoxicity in vivo. Trends in Immunology.

; 38(6): 432-443.

Vignali DAA, Collison LW, Workman CJ. How regulatory T cells

work. Nat Rev Immunol. 2008; 8(7): 523-32.

den Haan JM, Arens R, van Zelm MC. The activation of the

adaptive immune system: cross-talk between antigenpresenting

cells, T cells and B cells. Immunol Lett. 2014;

(2 Pt B):103-12.

Bachmann MF, Oxenius A. Interleukin 2: from immunostimulation

to immunoregulation and back again. 2007. EMBO Rep. 8(12):

-148.

Sharpe AH, Abbas AK. T-Cell costimulation: biology,

therapeutic potential, and challenges. N Engl J Med. 2006;

(10): 973-75.

Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, et.

al. The CD28 signaling pathway regulates glucose metabolism.

Immunity. 2002; 16(6): 769-77.

Sharpe AH, Pauken KE. The diverse functions of the PD1

inhibitory pathway. Nat Rev Immunol. 2018; 18(3): 153-67.

Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance

to immune checkpoint inhibitors. Br J Cancer. 2018; 118(1):9-16.

Tubo NJ, Jenkins MK. TCR signal quantity and quality in CD4+

T cell differentiation. Trends Immunol. 2014; 35(12): 591-96.

Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T

cell populations. Annu Rev Immunol. 2010; 28: 445-89

Rodríguez-Pinto D. B cells as antigen presenting cells. Cell

Immunol. 238(2): 67-75

Shishido SN, Varahan S, Yuan K, Li X, Flemingd SD. Humoral

innate immune response and disease. Clin Immunol. 2012;

(2): 142-58.

Chávez-Galán L, Arenas-Del Angel MC, Zenteno E, Chávez R,

Lascurain R. Cell death mechanisms induced by cytotoxic

lymphocytes. Cell. Mol. Immunol. 2009; 6(1): 15-25.

Rogers LM, Veeramani S, Weiner GJ. Complement in

monoclonal antibody therapy of cancer. Immunol Res. 2014;59(1-3): 203-10.

Hubert P, Amigorena S. Antibody-dependent cell cytotoxicity

in monoclonal antibody-mediated tumor immunotherapy.

Oncoimmunology. 2012; 1(1): 103-105.

Viganò S, Perreau M, Pantaleo G, Harari A. Positive and

negative regulation of cellular immune responses in physiologic

conditions and diseases. Clin Dev Immunol.2012;2012:485781


Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2018 Horizonte Médico

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.

La revista es publicada por Facultad de Medicina Humana, Universidad de San Martín de Porres

Dirección: Av. El Corregidor 1531, La Molina. Lima, Perú.
ISSN: 1727-558X (impreso); 2227-3530 (en línea).
DOI: http://doi.org/10.24265/horizmed
Contacto:
horizonte_medico@usmp.pe